Last updated: 2025-03-25
Checks: 7 0
Knit directory:
Genomic-prediction-through-machine-learning-and-neural-networks-for-traits-with-epistasis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220720)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version ad579ef. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/index.Rmd
) and HTML
(docs/index.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | ad579ef | WevertonGomesCosta | 2025-03-25 | updates .html |
Rmd | 4d5e231 | WevertonGomesCosta | 2025-03-24 | uptade index |
html | 4d5e231 | WevertonGomesCosta | 2025-03-24 | uptade index |
Rmd | 195135e | WevertonGomesCosta | 2025-03-24 | Re-added files after cleaning cache |
Rmd | 8d033e9 | WevertonGomesCosta | 2025-03-24 | Removed all cached files to update .gitignore |
Rmd | a482b01 | WevertonGomesCosta | 2025-03-24 | Descrição das alterações realizadas |
Rmd | 8035d84 | WevertonGomesCosta | 2025-03-24 | Update |
Rmd | d93535c | WevertonGomesCosta | 2025-03-24 | Update |
Rmd | a24c866 | WevertonGomesCosta | 2022-09-20 | Update |
Rmd | e0f9a3e | WevertonGomesCosta | 2022-07-20 | Start workflowr project. |
Bem-vindo! Este repositório contém a implementação completa e recursos associados ao estudo de predição genômica utilizando técnicas avançadas de aprendizado de máquina e redes neurais artificiais, com foco especial em características influenciadas por efeitos epistáticos.
Este trabalho é parte integrante do artigo científico:
Predição Genômica através de Machine Learning e Redes Neurais
para Características com Epistasia
Autores: Weverton Gomes da Costa et al.
Periódico: Comput Struct Biotechnol J.
2022;20:5490-5499
DOI: 10.1016/j.csbj.2022.09.029
PMID: 36249559 | PMCID: PMC9547190
Este projeto foi desenvolvido no âmbito das pesquisas do Laboratório de Inteligência Computacional e Aprendizado Estatístico (LICAE) da Universidade Federal de Viçosa (UFV), especializado em aplicações avançadas de inteligência computacional em problemas genômicos complexos.
Este repositório contém:
git clone https://github.com/wevertongomescosta/Genomic-prediction-through-machine-learning-and-neural-networks-for-traits-with-epistasis.git
renv::restore()
Rscript scripts/main_analysis.R
Contribuições são bem-vindas mediante: - Abertura de issues para discussão de melhorias - Submissão de pull requests para correções críticas - Sugestões de extensões metodológicas
Este trabalho está licenciado sob CC BY-NC-SA 4.0. Para uso comercial ou modificações significativas, por favor contate os autores.
Coordenação do Projeto:
Weverton Gomes da Costa
Pós-Doutorando - Departamento de Estatística - UFV
weverton.costa@ufv.br
Laboratório LICAE:
licae@ufv.br | https://www.licae.ufv.br/
Welcome! This repository contains the complete implementation and associated resources for the genomic prediction study using advanced machine learning techniques and artificial neural networks, with special focus on traits influenced by epistatic effects.
This work is part of the research article:
Genomic Prediction through Machine Learning and Neural Networks
for Traits with Epistasis
Authors: Weverton Gomes da Costa et al.
Journal: Comput Struct Biotechnol J.
2022;20:5490-5499
DOI: 10.1016/j.csbj.2022.09.029
PMID: 36249559 | PMCID: PMC9547190
This project was developed as part of the research activities at the Computational Intelligence and Statistical Learning Laboratory (LICAE) of the Federal University of Viçosa (UFV), specialized in advanced applications of computational intelligence to complex genomic problems.
This repository contains:
git clone https://github.com/wevertongomescosta/Genomic-prediction-through-machine-learning-and-neural-networks-for-traits-with-epistasis.git
renv::restore()
Rscript scripts/main_analysis.R
Contributions are welcome through: - Issue opening for improvement discussions - Pull request submission for critical fixes - Suggestions for methodological extensions
This work is licensed under CC BY-NC-SA 4.0. For commercial use or significant modifications, please contact the authors.
Project Coordinator:
Weverton Gomes da Costa
Post-Doctoral Researcher - Statistics Department - UFV
weverton.costa@ufv.br
LICAE Laboratory:
licae@ufv.br | https://www.licae.ufv.br/
Full Author List
Weverton Gomes da Costa¹, Maurício de Oliveira Celeri², Ivan de Paiva
Barbosa³, Gabi Nunes Silva⁴, Camila Ferreira Azevedo³, Aluizio Borem³,
Moysés Nascimento², Cosme Damião Cruz¹
¹UFV, ²UFLA, ³Universidade de São Paulo, ⁴Universidade Federal de Minas
Gerais
R version 4.4.3 (2025-02-28 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)
Matrix products: default
locale:
[1] LC_COLLATE=Portuguese_Brazil.utf8 LC_CTYPE=Portuguese_Brazil.utf8
[3] LC_MONETARY=Portuguese_Brazil.utf8 LC_NUMERIC=C
[5] LC_TIME=Portuguese_Brazil.utf8
time zone: America/Sao_Paulo
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] vctrs_0.6.5 cli_3.6.4 knitr_1.49 rlang_1.1.5
[5] xfun_0.51 stringi_1.8.4 promises_1.3.2 jsonlite_1.9.1
[9] workflowr_1.7.1 glue_1.8.0 rprojroot_2.0.4 git2r_0.35.0
[13] htmltools_0.5.8.1 httpuv_1.6.15 sass_0.4.9 rmarkdown_2.29
[17] evaluate_1.0.3 jquerylib_0.1.4 tibble_3.2.1 fastmap_1.2.0
[21] yaml_2.3.10 lifecycle_1.0.4 whisker_0.4.1 stringr_1.5.1
[25] compiler_4.4.3 fs_1.6.5 Rcpp_1.0.14 pkgconfig_2.0.3
[29] rstudioapi_0.17.1 later_1.4.1 digest_0.6.37 R6_2.6.1
[33] pillar_1.10.1 magrittr_2.0.3 bslib_0.9.0 tools_4.4.3
[37] cachem_1.1.0