Last updated: 2025-03-25

Checks: 7 0

Knit directory: Genomic-prediction-through-machine-learning-and-neural-networks-for-traits-with-epistasis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220720) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ad579ef. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html ad579ef WevertonGomesCosta 2025-03-25 updates .html
Rmd 4d5e231 WevertonGomesCosta 2025-03-24 uptade index
html 4d5e231 WevertonGomesCosta 2025-03-24 uptade index
Rmd 195135e WevertonGomesCosta 2025-03-24 Re-added files after cleaning cache
Rmd 8d033e9 WevertonGomesCosta 2025-03-24 Removed all cached files to update .gitignore
Rmd a482b01 WevertonGomesCosta 2025-03-24 Descrição das alterações realizadas
Rmd 8035d84 WevertonGomesCosta 2025-03-24 Update
Rmd d93535c WevertonGomesCosta 2025-03-24 Update
Rmd a24c866 WevertonGomesCosta 2022-09-20 Update
Rmd e0f9a3e WevertonGomesCosta 2022-07-20 Start workflowr project.

Predição Genômica através de Machine Learning e Redes Neurais para Características com Epistasia

Bem-vindo! Este repositório contém a implementação completa e recursos associados ao estudo de predição genômica utilizando técnicas avançadas de aprendizado de máquina e redes neurais artificiais, com foco especial em características influenciadas por efeitos epistáticos.

Arquitetura do Modelo
Arquitetura do Modelo

Publicação Associada

Este trabalho é parte integrante do artigo científico:
Predição Genômica através de Machine Learning e Redes Neurais para Características com Epistasia
Autores: Weverton Gomes da Costa et al.
Periódico: Comput Struct Biotechnol J. 2022;20:5490-5499
DOI: 10.1016/j.csbj.2022.09.029
PMID: 36249559 | PMCID: PMC9547190

Sobre o LICAE

Este projeto foi desenvolvido no âmbito das pesquisas do Laboratório de Inteligência Computacional e Aprendizado Estatístico (LICAE) da Universidade Federal de Viçosa (UFV), especializado em aplicações avançadas de inteligência computacional em problemas genômicos complexos.

Recursos Disponíveis

Este repositório contém:

  1. Código de Análise: Implementações completas dos algoritmos de ML e redes neurais
  2. Fluxo de Trabalho Reprodutível: Pipeline completo de análise de dados genômicos
  3. Dados Sintéticos: Conjuntos de dados para teste e validação
  4. Visualizações Interativas: Gráficos e análises exploratórias dos resultados
Pipeline de Análise
Pipeline de Análise

Como Utilizar

  1. Clone o repositório: git clone https://github.com/wevertongomescosta/Genomic-prediction-through-machine-learning-and-neural-networks-for-traits-with-epistasis.git
  2. Instale as dependências: renv::restore()
  3. Execute o pipeline principal: Rscript scripts/main_analysis.R

Contribuição

Contribuições são bem-vindas mediante: - Abertura de issues para discussão de melhorias - Submissão de pull requests para correções críticas - Sugestões de extensões metodológicas

Licença

Este trabalho está licenciado sob CC BY-NC-SA 4.0. Para uso comercial ou modificações significativas, por favor contate os autores.

Contato

Coordenação do Projeto:
Weverton Gomes da Costa
Pós-Doutorando - Departamento de Estatística - UFV

Laboratório LICAE:
| https://www.licae.ufv.br/


Genomic Prediction through Machine Learning and Neural Networks for Traits with Epistasis

Welcome! This repository contains the complete implementation and associated resources for the genomic prediction study using advanced machine learning techniques and artificial neural networks, with special focus on traits influenced by epistatic effects.

Associated Publication

This work is part of the research article:
Genomic Prediction through Machine Learning and Neural Networks for Traits with Epistasis
Authors: Weverton Gomes da Costa et al.
Journal: Comput Struct Biotechnol J. 2022;20:5490-5499
DOI: 10.1016/j.csbj.2022.09.029
PMID: 36249559 | PMCID: PMC9547190

About LICAE

This project was developed as part of the research activities at the Computational Intelligence and Statistical Learning Laboratory (LICAE) of the Federal University of Viçosa (UFV), specialized in advanced applications of computational intelligence to complex genomic problems.

Available Resources

This repository contains:

  1. Analysis Code: Complete implementations of ML algorithms and neural networks
  2. Reproducible Workflow: Complete genomic data analysis pipeline
  3. Synthetic Datasets: Test and validation datasets
  4. Interactive Visualizations: Exploratory analysis plots and results

How to Use

  1. Clone repository: git clone https://github.com/wevertongomescosta/Genomic-prediction-through-machine-learning-and-neural-networks-for-traits-with-epistasis.git
  2. Install dependencies: renv::restore()
  3. Run main pipeline: Rscript scripts/main_analysis.R

Contribution

Contributions are welcome through: - Issue opening for improvement discussions - Pull request submission for critical fixes - Suggestions for methodological extensions

License

This work is licensed under CC BY-NC-SA 4.0. For commercial use or significant modifications, please contact the authors.

Contact

Project Coordinator:
Weverton Gomes da Costa
Post-Doctoral Researcher - Statistics Department - UFV

LICAE Laboratory:
| https://www.licae.ufv.br/


Full Author List
Weverton Gomes da Costa¹, Maurício de Oliveira Celeri², Ivan de Paiva Barbosa³, Gabi Nunes Silva⁴, Camila Ferreira Azevedo³, Aluizio Borem³, Moysés Nascimento², Cosme Damião Cruz¹
¹UFV, ²UFLA, ³Universidade de São Paulo, ⁴Universidade Federal de Minas Gerais


sessionInfo()
R version 4.4.3 (2025-02-28 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=Portuguese_Brazil.utf8  LC_CTYPE=Portuguese_Brazil.utf8   
[3] LC_MONETARY=Portuguese_Brazil.utf8 LC_NUMERIC=C                      
[5] LC_TIME=Portuguese_Brazil.utf8    

time zone: America/Sao_Paulo
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] vctrs_0.6.5       cli_3.6.4         knitr_1.49        rlang_1.1.5      
 [5] xfun_0.51         stringi_1.8.4     promises_1.3.2    jsonlite_1.9.1   
 [9] workflowr_1.7.1   glue_1.8.0        rprojroot_2.0.4   git2r_0.35.0     
[13] htmltools_0.5.8.1 httpuv_1.6.15     sass_0.4.9        rmarkdown_2.29   
[17] evaluate_1.0.3    jquerylib_0.1.4   tibble_3.2.1      fastmap_1.2.0    
[21] yaml_2.3.10       lifecycle_1.0.4   whisker_0.4.1     stringr_1.5.1    
[25] compiler_4.4.3    fs_1.6.5          Rcpp_1.0.14       pkgconfig_2.0.3  
[29] rstudioapi_0.17.1 later_1.4.1       digest_0.6.37     R6_2.6.1         
[33] pillar_1.10.1     magrittr_2.0.3    bslib_0.9.0       tools_4.4.3      
[37] cachem_1.1.0