Last updated: 2025-07-29

Checks: 6 1

Knit directory: Importance-of-markers-for-QTL-detection-by-machine-learning-methods/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20221222) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9b2cb7c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    output/imp.tot.RData
    Ignored:    output/lddecay.tiff
    Ignored:    output/mod.rda

Unstaged changes:
    Modified:   analysis/GWAS.Rmd
    Modified:   analysis/gwas-GLM.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/map.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 471e9e3 WevertonGomesCosta 2025-03-25 add index.html
Rmd 2d83433 WevertonGomesCosta 2025-03-25 update index.Rmd
Rmd 6de3e22 WevertonGomesCosta 2025-03-25 Sua mensagem de commit explicando as alterações
html e044f37 WevertonGomesCosta 2025-03-25 add index.html
Rmd 081eb18 WevertonGomesCosta 2022-12-22 Start workflowr project.

Português

Detecção de QTLs por Métodos de Machine Learning

GWAS ML Framework
GWAS ML Framework

Bem-vindo ao repositório oficial deste projeto de pesquisa, que visa aprimorar a identificação de marcadores moleculares para detecção de QTLs utilizando técnicas de machine learning. A seguir, você encontrará uma visão geral dos principais objetivos, recursos e instruções para utilização deste repositório.

Objetivos do Projeto

  • Desenvolver um Pipeline Computacional: Implementar um fluxo completo de análises GWAS com métodos de ML.
  • Comparar Desempenho de Algoritmos: Avaliar e comparar algoritmos (MLP, RBF, Decision Tree, Bagging, Random Forest, Boosting e MARS) na identificação de QTLs.
  • Propor Métricas de Importância: Estabelecer métricas que possibilitem avaliar a relevância dos marcadores genômicos.
  • Visualizações Interativas: Criar ferramentas que permitam a exploração e interpretação dos dados e dos resultados.

Sobre o LICAE

Este projeto foi desenvolvido no âmbito do Laboratório de Inteligência Computacional e Aprendizado Estatístico (LICAE) da Universidade Federal de Viçosa (UFV), especializado em aplicações avançadas de inteligência computacional para desafios genômicos.

Recursos Disponíveis

  • Código de Análise: Implementações completas dos algoritmos de machine learning.
  • Workflow Reprodutível: Pipeline abrangente para análise de dados genômicos.
  • Dados Sintéticos: Conjuntos de dados para teste e validação.
  • Visualizações Interativas: Ferramentas para exploração dos resultados.

Como Utilizar

  1. Clonar o Repositório:
    git clone https://github.com/WevertonGomesCosta/Importance-of-markers-for-QTL-detection-by-machine-learning-methods.git
  2. Instalar Dependências:
    renv::restore()
  3. Executar o Pipeline Principal:
    Rscript scripts/main_analysis.R

Contribuição

Contribuições são bem-vindas!
- Abra issues para sugerir melhorias;
- Submeta pull requests com correções e novas ideias;
- Colabore com sugestões de extensões metodológicas.

Licença

Este trabalho está licenciado sob CC BY-NC-SA 4.0.
Para uso comercial ou modificações significativas, entre em contato com os autores.

Contato

Coordenador do Projeto:
Weverton Gomes da Costa
Pós-Doutorando - Departamento de Estatística - UFV
weverton.costa@ufv.br

Laboratório LICAE:
licae@ufv.br | https://www.licae.ufv.br/


English

QTL Detection Through Machine Learning Methods

GWAS ML Framework
GWAS ML Framework

Welcome to the official repository for this research project, which aims to improve the identification of molecular markers for QTL detection using machine learning techniques. Below you will find an overview of the project’s main objectives, key features, and instructions for using this repository.

Project Objectives

  • Develop a Computational Pipeline: Implement a comprehensive GWAS analysis workflow using ML methods.
  • Compare Algorithm Performance: Evaluate and compare algorithms (MLP, RBF, Decision Tree, Bagging, Random Forest, Boosting, and MARS) in detecting QTLs.
  • Propose Marker Importance Metrics: Establish metrics to assess the relevance of genomic markers.
  • Interactive Visualizations: Create tools for exploring and interpreting genomic data and results.

Quick Navigation

  • :world_map: Genetic Map - Chromosomal linkage visualization
  • :bar_chart: Marker Importance - Comparative algorithm analysis
  • :page_facing_up: About - Methodological and institutional details
  • :balance_scale: License - Terms of use and distribution

About LICAE

This project was developed at the Computational Intelligence and Statistical Learning Laboratory (LICAE) of the Federal University of Viçosa (UFV), specializing in advanced computational intelligence applications to complex genomic problems.

Available Resources

  • Analysis Code: Complete implementations of machine learning algorithms.
  • Reproducible Workflow: Comprehensive genomic data analysis pipeline.
  • Synthetic Datasets: Datasets for testing and validation.
  • Interactive Visualizations: Tools for exploratory data analysis and results interpretation.

How to Use

  1. Clone the Repository:
    git clone https://github.com/WevertonGomesCosta/Importance-of-markers-for-QTL-detection-by-machine-learning-methods.git
  2. Install Dependencies:
    renv::restore()
  3. Run the Main Pipeline:
    Rscript scripts/main_analysis.R

Contribution

Contributions are welcome!
- Open issues to suggest improvements;
- Submit pull requests with fixes and new ideas;
- Share suggestions for methodological extensions.

License

This work is licensed under CC BY-NC-SA 4.0.
For commercial use or significant modifications, please contact the authors.

Contact

Project Coordinator:
Weverton Gomes da Costa
Post-Doctoral Researcher - Statistics Department - UFV
weverton.costa@ufv.br

LICAE Laboratory:
licae@ufv.br | https://www.licae.ufv.br/


sessionInfo()
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=Portuguese_Brazil.utf8  LC_CTYPE=Portuguese_Brazil.utf8   
[3] LC_MONETARY=Portuguese_Brazil.utf8 LC_NUMERIC=C                      
[5] LC_TIME=Portuguese_Brazil.utf8    

time zone: America/Sao_Paulo
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] vctrs_0.6.5       cli_3.6.5         knitr_1.50        rlang_1.1.6      
 [5] xfun_0.52         stringi_1.8.7     promises_1.3.3    jsonlite_2.0.0   
 [9] workflowr_1.7.1   glue_1.8.0        rprojroot_2.0.4   git2r_0.36.2     
[13] htmltools_0.5.8.1 httpuv_1.6.16     sass_0.4.10       rmarkdown_2.29   
[17] evaluate_1.0.4    jquerylib_0.1.4   tibble_3.3.0      fastmap_1.2.0    
[21] yaml_2.3.10       lifecycle_1.0.4   whisker_0.4.1     stringr_1.5.1    
[25] compiler_4.4.1    fs_1.6.6          Rcpp_1.1.0        pkgconfig_2.0.3  
[29] rstudioapi_0.17.1 later_1.4.2       digest_0.6.37     R6_2.6.1         
[33] pillar_1.11.0     magrittr_2.0.3    bslib_0.9.0       tools_4.4.1      
[37] cachem_1.1.0