Last updated: 2025-07-09

Checks: 6 1

Knit directory: Machine-learning-e-redes-neurais-artificiais-no-melhoramento-genetico-do-cafeeiro/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250709) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c690214. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd c690214 WevertonGomesCosta 2025-07-09 update index
html c690214 WevertonGomesCosta 2025-07-09 update index
Rmd b8cc56b WevertonGomesCosta 2025-07-09 add index
html b8cc56b WevertonGomesCosta 2025-07-09 add index
Rmd be23fb6 WevertonGomesCosta 2025-07-09 Start workflowr project.

Machine Learning e Redes Neurais no Melhoramento Genético do Cafeeiro

Bem-vindo! Este repositório reúne código, dados e relatórios associados ao estudo de seleção genômica ampla (GWS) em Coffea arabica, empregando métodos de machine learning e redes neurais artificiais para seleção de genótipos e detecção de SNPs informativos.

Pipeline de Análise
Pipeline de Análise

Publicação Associada

Este trabalho faz parte do Projeto de Pesquisa:

  • Processo: BPD-00922-22
  • Chamada: Edital 017/2022 – Programa de Apoio à Fixação de Jovens Doutores
  • Período: 01/04/2023 a 28/02/2025

Sobre o LICAE

Este projeto foi desenvolvido no âmbito das pesquisas do Laboratório de Inteligência Computacional e Aprendizado Estatístico (LICAE) da Universidade Federal de Viçosa (UFV), especializado em aplicações avançadas de inteligência computacional em problemas genômicos complexos.

Recursos Disponíveis

  1. Código de Análise: Scripts R/Python para pré-processamento, modelagem e avaliação.
  2. Dados: Genótipos reais (195 indivíduos, 21 211 SNPs) e simulados (1 000 indivíduos, 4 010 SNPs).
  3. Notebooks: Exemplos interativos de EDA, GWS e GWAS.
  4. Visualizações: Gráficos de acurácia (R²), RMSE e ranking de genótipos.
Arquitetura do Modelo
Arquitetura do Modelo

Como Utilizar

  1. Clone o repositório: git clone https://github.com/wevertongomescosta/Genomic-prediction-through-machine-learning-and-neural-networks-for-traits-with-epistasis.git
  2. Instale as dependências: renv::restore()
  3. Execute o pipeline principal: Rscript scripts/main_analysis.R

Contribuição

Contribuições são bem-vindas mediante: - Abertura de issues para discussão de melhorias - Submissão de pull requests para correções críticas - Sugestões de extensões metodológicas

Licença

Este trabalho está licenciado sob CC BY-NC-SA 4.0. Para uso comercial ou modificações significativas, por favor contate os autores.

Contato

Coordenador
Moyses Nascimento
Professor Adjunto - Departamento de Estatística - UFV

Bolsista
Weverton Gomes da Costa
Pós-Doutorando - Departamento de Estatística - UFV

Laboratório LICAE:
| https://www.licae.ufv.br/


Machine Learning and Neural Networks in Coffee Genetic Breeding

Welcome! This repository gathers code, data, and reports associated with the Genome Wide Selection (GWS) study in Coffea arabica, employing machine learning and artificial neural network methods for genotype selection and informative SNP detection.

Analysis Pipeline
Analysis Pipeline

Associated Project

This work is part of the Research Project:

  • Process: BPD-00922-22
  • Call: Notice 017/2022 – Program to Support the Retention of Young Postdocs in Brazil
  • Period: April 1, 2023 to February 28, 2025

About LICAE

This project was developed within the research activities of the Computational Intelligence and Statistical Learning Laboratory (LICAE) at the Federal University of Viçosa (UFV), specialized in advanced computational intelligence applications to complex genomic problems.

Available Resources

  1. Analysis Code: R and Python scripts for preprocessing, modeling, and evaluation.
  2. Data: Real genotypes (195 individuals, 21,211 SNPs) and simulated (1,000 individuals, 4,010 SNPs).
  3. Notebooks: Interactive examples of EDA, GWS, and GWAS.
  4. Visualizations: Plots of accuracy (R²), RMSE, and genotype rankings.
Model Architecture
Model Architecture

How to Use

  1. Clone the repository:

    git clone https://github.com/wevertongomescosta/coffee-gws.git
  2. Install dependencies:

    renv::restore()
  3. Run the main pipeline:

    Rscript scripts/main_analysis.R

Contribution

Contributions are welcome via:
- Opening issues for improvement discussions
- Submitting pull requests for critical fixes
- Suggestions for methodological extensions

License

This work is licensed under CC BY-NC-SA 4.0. For commercial use or significant modifications, please contact the authors.

Contact

Project Coordinator
Moyses Nascimento
Associate Professor, Department of Statistics, UFV

Research Fellow
Weverton Gomes da Costa
Post-Doctoral Researcher, Department of Statistics, UFV

LICAE Laboratory
| https://www.licae.ufv.br/


sessionInfo()
R version 4.4.3 (2025-02-28 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=Portuguese_Brazil.utf8  LC_CTYPE=Portuguese_Brazil.utf8   
[3] LC_MONETARY=Portuguese_Brazil.utf8 LC_NUMERIC=C                      
[5] LC_TIME=Portuguese_Brazil.utf8    

time zone: America/Sao_Paulo
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] vctrs_0.6.5       cli_3.6.5         knitr_1.50        rlang_1.1.6      
 [5] xfun_0.52         stringi_1.8.7     promises_1.3.3    jsonlite_2.0.0   
 [9] workflowr_1.7.1   glue_1.8.0        rprojroot_2.0.4   git2r_0.36.2     
[13] htmltools_0.5.8.1 httpuv_1.6.16     sass_0.4.10       rmarkdown_2.29   
[17] evaluate_1.0.3    jquerylib_0.1.4   tibble_3.3.0      fastmap_1.2.0    
[21] yaml_2.3.10       lifecycle_1.0.4   whisker_0.4.1     stringr_1.5.1    
[25] compiler_4.4.3    fs_1.6.6          Rcpp_1.0.14       pkgconfig_2.0.3  
[29] rstudioapi_0.17.1 later_1.4.2       digest_0.6.37     R6_2.6.1         
[33] pillar_1.10.2     magrittr_2.0.3    bslib_0.9.0       tools_4.4.3      
[37] cachem_1.1.0     

  1. Weverton Gomes da Costa, Pós-Doutorando, Departamento de Estatística - Universidade Federal de Viçosa, ↩︎